
C++ Report

®

MPW C++ and You

Tim Swihart

®

Development Tools
Product Marketing MPW

C++ Product Manager

Session Overview

• What, Why, Where,...
– Tim Swihart, MPW C++ Product Mgr.

• New Features
– Preston Gardner, C++ Lead Engr.

• MPW C++ and MacApp
– Jack Palevich, Adv. Tech. Group

• Questions & Answers
– Entire panel

What is MPW C++?

• Apple’s implementation of AT&T C++
Release 2.0

• Enhancements:
– Fully supports Macintosh Toolbox
– Complex Library redone using SANE
– C++ source–level debugging w/SADE
– Supports Object Pascal functions and

procedures (á la MacApp)

Why C++ for MPW?

• Provides object technology for C
programmers
– Reduces development time
– Increases application reliability
– Facilitates reusable code
– Makes application maintenance easier
– Provides better model than procedural

programming

C++ and MacApp

• Object Technology builds on a
class library

• MacApp has years of use and
testing behind it

• MPW C++ users can take full
advantage of third-generation
class library

• Today’s developers can leverage
off of yesterday’s

Where Do I Get MPW C++?

• Only from APDA
– 1-800-282-2732 (U.S.)
– 1-800-637-0029 (Canada)
– 1-408-562-3910 (International)

• Price: $175
• Requires at least MPW 3.0 and

MPW C 3.0*

* MPW 3.1 and MPW C 3.1 preferred

Preston Gardner

®

Development Systems Group
C++ Lead Engineer

MPW C++
New Features

®

Load/Dump

Why Load/Dump?

• C++ promotes code reuse through classes
and type derivation

• But...
– This forces even small programs to

have big header files
– The “hello world” program at the start

of the C++ book uses about 2500 lines
of header files

So...

• MPW C++ can now compile the headers
and “dump” the compiler state to a file

• Unless the headers are changed, the
compiler state can always be loaded
from the dumped file

• Speed improvement: 2–3 X

// this file is "MonkeySink.cp"

#include "Monkey.h"
#include "Helicopter.h"
#include "KitchenSink.h"
main()
{ Monkey cheetah;
 Helicopter chopper;
 KitchenSink kelvinator;
 cheetah.learn_to_fly;
 chopper.hijack(cheetah);
 chopper.crash_land_in(kelvinator);}

// this file is "MonkeySink.cp"

main()
{ Monkey cheetah;
 Helicopter chopper;
 KitchenSink kelvinator;
 cheetah.learn_to_fly;
 chopper.hijack(cheetah);
 chopper.crash_land_in(kelvinator);}

#include "Monkey.h"
#include "Helicopter.h"
#include "KitchenSink.h"

// This file is "MonkeySinkDump.h"

#include "Monkey.h"
#include "Helicopter.h"
#include "KitchenSink.h"

// This file is "MonkeySinkLoad.cp"

// #include "Monkey.h"
// #include "Helicopter.h"
// #include "KitchenSink.h"
main()
{ Monkey cheetah;
 Helicopter chopper;
 KitchenSink kelvinator;
 cheetah.learn_to_fly;
 chopper.hijack(cheetah);
 chopper.crash_land_in(kelvinator);}

Original command line:
CPlus -I HD:Hdrs MonkeySink.cp

Command line to make dump file:
CPlus -I HD:Hdrs -dump MHS.dump ∂
MonkeySinkDump.cp

Command line to load and make program:
CPlus -load MHS.dump MonkeySinkLoad.cp

/* This file is monkey.h */

#ifndef __MONKEY__
#define __MONKEY__ 1

class Monkey {
 .
 .
 .
};
#endif __MONKEY__

/* This is MonkeySink.cp */

#ifndef __MONKEY__
#include "Monkey.h"
#endif __MONKEY__

#ifndef __HELICOPTER__
#include "Helicopter.h"
#endif __HELICOPTER__
#ifdef __KITCHENSINK__
#include "KitchenSink.h"
#endif __KITCHENSINK__
main()
{// ...etc...}

Things to Look Out for

• Code in header files–declarations of
variables and bodies of functions

• CPlus will create a“monkey.h.o” file
which must be linked with the
other “.o” files

Things to Look Out for (cont.)

• Conditional compilations–ex:

#ifdef MAC
#endif MAC

• The dump file ALSO remembers the
preprocessor state. If MAC was defined for the
dump, it will be defined for anything loaded from
that dump. If you change macros for conditional
compilation, you MUST rebuild the dump file!

Mark

What are “Marks?”

• Marks are MPW file markers stored
in the resource portion of a file

• MPW C++ now will define marks
(via “-mark option”)

• The options are:
– mark fcts
– mark types
– mark data
– mark all

MultiFinder Option

• Lets CPlus use MultiFinder memory
(via “-mf” flag)

• Allows MPW Shell’s partition to be
kept small

Jack Palevich

®

Adv. Tech. Group
C++/MacApp Pioneer

Using C++ with MacApp

®

Advantages of C++ vs. Object Pascal

• Private and protected members
• Function and operator overloading
• Static, stack, and pointer based objects
• Inline methods and functions
• Multiple inheritance

Advantages of Object Pascal vs. C++

• Development cycle is faster
• More error checking ({$R+}

and {$H+})
• WITH statement
• Nested procedures
• OVERRIDE keyword
• Does not require manual

specification of virtual functions

Emulating Object Pascal Features

• WITH via temporary pointers
• Exception handling via macros
• Nested Procedure Pointers via

glue code (Tech Note 265)

PascalObject Compatible Features

• Public, protected and private class
members

• Inline methods for speed
• Const arguments keep you honest
• Pass by reference for speed and clarity
• Operator overloading
• Function overloading

PascalObject Incompatible Features

• Use pointer, static, and automatic storage
• Override new and delete
• Use multiple inheritance

Macintosh Toolbox Data Structures

• Can’t use virtual methods without
adding vtable pointer

• Simplify parameter-block interfaces
• QuickDraw data structures

– Points, Rects, Regions are naturals!
– Use operator overloading +, -, =, etc.
– Iterators for Resource files

Macintosh Toolbox Data Structures

• Network objects
– Constructors open ports
– Destructors close ports

Questions & Answers

®

The power to be your best

®

